理解 CKB 的 Cell 模型

当前位置:首页 > 区块链 > 区块链知识 发布时间:2019-05-07编辑:来源:www.chgold.com阅读数: 手机阅读
很多人说 Cell 模型简单得令人感到幸福,如果你觉得自己已经理解了 Bitcoin 和 UTXO ,那么恭喜你,你也已经理解了 CKB 和 Cell!在本篇文章中,Nervos 架构师 Jan 深入浅出地将 CKB Cell 模型及其验证做了详细的介绍。欢迎阅读,和 Jan 一起探索 Cell Model。在设计 CKB 的时候,我们想要解决三个方面的问题:· 状态爆炸引起的公地悲剧及去中心化的丧失;· 计算和验证耦合在了一起使得无论是计算还是验证都失去了灵活性,难以扩展;· 交易与价值存储这两个目标的内在矛盾,Layer 2 和跨链的出现将放大这种矛盾,并对 Layer 1 的经济产生非常负面的影响。对这些问题没有答案,Layer 1 就无法长久运行,区块链给我们的种种承诺自然也是无从谈起。这三个问题根植于区块链架构和协议设计的最深处,很难通过打补丁的方式来解决,我们必须从最基本的数据结构开始,重新审视问题的根源,寻找更合适的地基。幸运的是,这个更合适的地基简单得令人感到幸福,而且一直就摆在我们眼前。(本文会包含一些非常简单的代码,应该不会影响非技术读者阅读……)从 Bitcoin 中我们学到了什么Bitcoin 把整个账本分割保存在了一个个 UTXO 里面,UTXO 是未花费交易输出(Unspent Transaction Output)的简写,实际上是交易中包含的输出(CTxOut)。CTxOut 的结构非常简单,只有两个字段: class CTxOut { public: CAmount nValue; CScript scriptPubKey; ... }每一个 CTxOut 代表了一个面值不同的硬币(Yay bit-“Coin”),其中 nValue代表这个硬币的面值是多少,scriptPubKey 是一段表示这个硬币所有者是谁的脚本(通常包含了所有者的公钥),只有能提供正确参数使这个脚本运行成功的人才能把这个硬币「转让」给另外一个人。

为什么要给「转让」打引号?因为在转让的时候,并不是简单地把硬币中的 scriptPubKey 修改或是替换掉,而是会销毁和创造新的硬币(毕竟在数字的世界中销毁和创造虚拟硬币的成本很低)。每一个 Bitcoin 交易,都会销毁一批硬币,同时又创造一批硬币,新创造的硬币会有新的面值和新的所有者,但是被销毁的总面值总是大于等于新创造的总面值,以保证没有人可以随意增发。交易表示的是账本状态的变化。

这样一个模型的特点是:· 硬币(资产)是第一性的;· 所有者是硬币的属性,每一枚硬币有且仅有一个所有者;· 硬币不断的被销毁和创建。是不是很简单?如果你觉得自己已经理解了 Bitcoin 和 UTXO ,恭喜你,你也已经理解了CKB 和 Cell!CellLayer 1 的关注点在状态,以 Layer 1 为设计目标的 CKB 设计的关注点很自然就是状态。Ethereum 将交易历史和状态历史分为两个维度,区块和交易表达的是触发状态迁移的事件而不是状态本身,而 Bitcoin 协议中的交易和状态融合成了一个维度,交易即状态,状态即交易,正是一个以状态为核心的架构。同时,CKB 想要验证和长久保存的状态,不仅仅是简单的数字(nValue),而是任何人认为有价值的、经过共识的数据。显然 Bitcoin 的交易输出结构满足不了这个需求,但是它已经给了我们足够的启发:只需要将 nValue 一般化,把它从一个存放整数的空间变成一个可以存放任意数据的空间,我们就得到了一个更加一般化的「CTxOut」,或者叫 Cell: pub struct CellOutput { pub capacity: Capacity, pub data: Vec<u8>, pub lock: Script, pub type_: Option<Script>, }在 Cell 里面,nValue 变成了 capacity 和 data 两个字段,这两个字段共同表示一块存储空间,capacity 是一个整数,表示这块空间有多大(以字节数为单位),data 则是保存状态的地方,可以写入任意的一段字节;scriptPubKey 变成了 lock,只是换了一个名字而已,表达的是这块共识空间的所有者是谁 - 只有能提供参数(例如签名)使得 lock 脚本成功执行的人,才能「更新」这个 Cell 中的状态。整个 CellOutput 占用的字节数必须小于等于 capacity。CKB 中存在着许许多多的 Cells,所有这些 Cell 的集合形成了 CKB 当前的完整状态,在 CKB 的当前状态中存储的是任意的共同知识,不再仅仅是某一种数字货币

交易依然表示状态的变化 / 迁移。状态的变化,或者说 Cell 内容的「更新」实际上也是通过销毁和创建来完成的(并不是真的去修改原有 Cell 中的内容)。每一笔交易实际上都会销毁一批 Cells,同时创建一批新的 Cells;新创造的 Cells 会有新的所有者,也会存放新的数据,但是被销毁的 capacity 总和总是大于等于新创建的 capacity 总和,由此保证没有人可以随便增发 capacity。因为 capacity 可以转让,无法增发,拥有 capacity 等于拥有相应数量的共识状态空间,capacity 是 CKB 网络中的原生资产。Cell 的销毁只是把它标记为「已销毁」,类似 Bitcoin 的 UTXO 从未花费变为已花费,并不是从区块链上删掉。每一个 Cell 只能被销毁一次,就像每一个 UTXO 只能被花费一次。这样一个模型的特点是:· 状态是第一性的;· 所有者是状态的属性,每一份状态只有一个所有者;· 状态不断的被销毁和创建。所以说,Cell 是 UTXO 的一般化(generalized)版本。Verify仅仅有一块可以保存任意状态的空间还不够。Bitcoin 之所以有价值,是因为网络中的全节点会对每一笔交易进行验证 ,使得所有用户都相信(并且知道别人也相信)Bitcoin 协议中写下的规则(例如 2100 万的上限)会得到保证。共同知识之所以能成为共同知识,是因为每个人都知道其他人认可这些知识 ,区块链之所以能让知识变成共同知识,是因为每个人都知道其他人都能独立验证这些知识并由此产生认可。任何共识的过程都包含了一系列的验证以及相互之间的反复确认,这个过程正是网络中共同知识形成的过程。(需要注意的是,验证知识是相对事先确定的验证规则来说的,通过验证的知识不代表命题为真。)我们如何验证 Cell 中保存的数据呢?这时候就需要 Cell 中的另一个字段 type 发挥作用了。type 与 lock 一样,也是一段脚本, type 定义了 data 字段中保存的数据在状态迁移过程中必须要遵守的规则,是对状态的约束。CKB 网络在共识的过程中,会在 CKB-VM 中执行 type 脚本,验证新生成的 Cell 中保存的状态符合 type 中预先定义好的规则。满足同一种 type 约束的所有 Cell,保存的是同一种类型的数据。举个例子,假设我们想定义一个叫做 SatoshiCoin 的代币(UDT,UserDefinedToken),它的状态迁移必须满足的约束是什么?只有两条:· 用户必须证明自己是输入代币的所有者;· 每一次转账的时候,输入的代币数量必须大于等于输出的代币数量。第一条约束可以通过 lock 脚本来表达,如果有兴趣可以查看这里的示例代码[1],与 Bitcoin 的 scriptPubKey 原理相同;第二条约束,在 Bitcoin 中是在底层硬编码实现的,在 CKB 中则是通过 type 脚本来实现。每个 Cell 代表的 SatoshiCoin 数量是一种状态,我们首先定义其状态结构,即每个 type 等于 SatoshiCoin 的 Cell 在 data 保存的状态为一个长度为 8 的字节串,代表的是序列化过后的数量: { "amount": "Bytes[8]" // serialized integer }type 脚本在执行中,需要读入交易中所有同类型的 Cells(根据 type 字段可以判断),然后检查同一类型下的输入 Cells 中保存的 amount 之和大于等于输出 Cells 中保存的 amount 之和 。于是通过 lock 和 type 两个脚本,我们就实现了一个最简单的代币。lock 和 type 脚本不仅可以读取自身 Cell 中保存的状态,也能够引用和读取其它 Cell 中保存的状态,所以 CKB 的编程模型是一个有状态的编程模型。值得指出的是,Ethereum 的编程模型之所以强大,更多是因为它有状态,而不是因为它的有限图灵完备。我们可以把 type 脚本保存在一个独立的 Cell 里面,然后在每一个 SatoshiCoin Cell 的 type 字段引用它,这样做的好处是相同的 type 脚本只需要一份空间保存,像这样保存数字资产定义的 Cell 我们把它叫做 ADC(Asset Definition Cell)。SatoshiCoin 的另一个特点是,具体的资产与所有者之间的记录,分散保存在多个独立的 Cell 里面,这些 Cell 可以是开发者提供给用户的,也可以是用户自己拥有的,甚至是租来的。只有在共识空间所有权明确的情况下,所有者才能真正拥有共识空间里面保存的资产(任何数据都是资产)。在 CKB 上,因为用户可以真正拥有共识空间,所以用户可以真正拥有数字资产(当你能真正拥有土地的时候,才能真正拥有土地上的房子)。Cell 是抽象的状态验证模型,Cell 提供的存储(data)没有任何内部结构,Cell 支持任意的状态验证规则(type)和所有权验证规则(lock),我们可以在 Cell 模型上模拟 UTXO 模型(就像上面的 SatoshiCoin),也可以在 Cell 模型上构建 Account 模型。lock 脚本在验证交易输入的时候执行,确保用户对输入有所有权,有权销毁输入的 Cells;type 脚本在验证交易输出的时候执行,确保用户生成的新状态符合类型约束,正确生成了新的 Cells。由于状态模型迥异,以及计算和验证分离,CKB 的编程模型与 Ethereum 的编程模型有非常大的不同,什么是 CKB 编程模型上的最佳实践还需要大量的探索。

通用验证网络(General Verification Network)Bitcoin 是一个验证网络(Verification Network)。在转账时,用户告诉钱包/本地客户端转账的数量和收款人,钱包根据用户提供的信息进行计算,在本地找出用户拥有的数量合适的硬币(UTXO),同时产生一批新的硬币,这些硬币有些归收款人所有,有些是找零。之后钱包将这些花费掉的硬币和新生成的硬币打包到一个交易里面,将交易广播,网络对交易验证后将交易打包到区块里面,交易完成。在这个过程中,网络中的节点并不关心老的状态(被销毁的硬币)是怎样被搜索出来的,也不关心新的状态(新硬币)是怎样生成出来的,只关心这些硬币的面值总和在交易前后没有改变。在转账过程中,计算在用户端完成,因此用户在交易发送时就能确定计算结果(新状态)是什么。Ethereum 是一个通用计算网络(General Computation Network)。在使用 DApp 的时候,用户告诉钱包/本地客户端想要进行的操作,钱包将用户的操作请求原样打包到交易里面,并将交易广播。网络节点收到交易之后,根据区块链的当前状态和交易包含的操作请求进行计算,生成新的状态。在这个过程中,计算在远端完成,交易结果(新状态)只有在交易被打包到区块之后才能确定,用户在交易发送的时候并不能完全确定计算结果。

(图中,上面是 Ethereum 的流程,交易中包含的是用户请求或者说事件/Event;下面是 Bitcoin/CKB 的流程,交易中包含的是链下生成的状态/State。)CKB 是一个通用验证网络(General Verification Network)。在使用 DApp 的时候,用户告诉钱包/本地客户端想要进行的操作,钱包根据当前状态和用户的操作请求进行计算,生成新的状态。在这个过程中,计算在用户端完成,计算结果(新状态)在交易发出的时候就已经确定了。换句话说,Bitcoin 和 CKB 都是先计算再共识,而 Ethereum 是先共识再计算。有趣的是,在许可链架构里面也有同样派别之分:Fabric 是先计算再共识,而 CITA(实际上不仅仅是许可链)是先共识再计算。(思考题:哪一种架构更适合许可链?)计算与验证的分离同时也使得 Layer 2 与 Layer 1 自然分开了。Layer 1 关心的是新的状态是什么,并不关心新的状态是如何得到的。无论是 State channel,Plasma 还是其他 Layer 2 方案,其实质都是在链外进行计算,在特定时候将最终状态提交到 Layer 1上进行验证。

为什么 CKB 的 Cell 模型更好?现在我们得到了一个非常不同的基础数据结构,在这个结构之上我们设计了独特的经济模型,这个结果真的更好吗?回顾一开始的三个问题也许能给我们一些启示。· capacity 是原生资产,受到预先确定的发行规则约束,其总量有限;· capacity 同时又是状态的度量,有多少 capacity ,CKB 上就能放多少数据,CKB 状态空间的最大值与 capacity 总量大小相等,CKB 上保存的状态不会超过 capacity 总量。这两点决定了 CKB 不会有状态爆炸的问题。在 capacity 发行规则适当的情况下,网络应该可以长久的保持去中心化的状态。每一个 Cell 都是独立状态,有明确的所有者,原本属于公共资源的状态空间被私有化,宝贵的共识空间可以被更有效的使用。CKB 是一个通用验证网络,计算和验证得到了分离,各自的灵活性和扩展性都得到了提高。更多的计算被推到了用户端执行,计算发生在离场景和数据更近的地方,数据处理的方式更灵活,工具更多样。这也意味着,在 CKB 架构中,钱包是一个能做的事情更多,能力更大的入口。在验证端,由于计算结果已经完全确定,交易的依赖分析变得非常轻松,交易的并行处理也就更加容易。在基于 Cell 建立的经济模型中,存储的使用成本与占用空间大小和占用时间成正比,矿工可以通过提供共识空间获得相应的收益。CKB 提供的 Utility 是安全的共识空间,价值来自于其安全性和可用性(accessability),并不是来自于交易处理能力(TPS),与 Layer 2 负责交易的特点相辅相成,在分层网络和跨链网络中具有更好的价值捕获能力。最后,CKB 不是……IPFSCKB 是一种存储这一点可能会使人感到迷惑:「这不就是 IPFS/Filecoin/(任何分布式存储)吗?」CKB 不是分布式存储,关键的区别在于分布式存储只有存储,没有验证,也就不会对其存储的数据形成共识。分布式存储的容量可以随着存储技术的增长而等比例的增长,而 CKB 的容量则收到形成全球共识效率的限制。CKB 也不需要担心容量不够。在 Layer 2 以及分层技术成熟的阶段,极端情况下,Layer 1 上可能只需要放一个 merkle root 就足够了。在 Layer 1 上进行验证所需要的状态,也可以通过交易提交给节点,节点通过 merkle proof 验证状态是有效的,在此基础之上再验证状态迁移是有效的,这个方向已经有一些研究。QtumQtum 是尝试在 UTXO 模型上引入更强大的智能合约的先行者之一,具体做法是保持 Bitcoin 原有的 UTXO 模型不变,在其上引入账户抽象层(Account Abstraction Layer),支持 EVM 或是 x86 虚拟机。在 Qtum 中,Bitcoin 的验证是第一层,EVM 的计算是第二层(注意这是一个区块连协议内部的分层,不是 Layer 1 和 Layer 2)。Qtum 对 UTXO 中 scriptPubKey 的处理逻辑进行修改,以实现在交易打包后,将 Bitcoin Transaction 中携带的请求传递给 EVM 进行执行的效果。Qtum 将 Bitcoin 和 Ethereum 的执行模型桥接到了一起,网络节点先验证交易输入部分(同 Bitcoin),再调用合约进行计算(同 Ethereum),状态分散在 UTXO 模型和 EVM 自己的状态存储两个地方,整体架构比较复杂。CKB 所做的是继承 Bitcoin 的架构思路,对 UTXO 模型进行一般化(Generalization)处理得到 Cell 模型,整体架构保持了一致性以及 Bitcoin 的简洁。CKB 上的所有状态都在 Cell 里面,计算在链下完成(类似 Bitcoin),网络节点只做验证。REFs:[1]https://github.com/nervosnetwork/ckb-ruby-scripts/blob/a75b5df8fdf833b7316bbd9213f73436401c86a5/udt/unlock.rb

上一篇主流共识机制PoS、PoW与DPoS、PoU对比演变

下一篇返回列表

区块链知识本月排行

区块链知识精选